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The flat plate boundary layer. Part 2. The effect 
of increasing thickness on stability 
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Numerical analysis has been used to find the neutral stability curve for the flat 
plate boundary layer in zero pressure gradient when the main terms representing 
the growth of boundary-layer thickness are either included or excluded. The 
boundary layer is found to be slightly less stable when the extra terms are 
included. The calculations give a critical Reynolds number of 500. 

Introduction 
The neutral stability curve for the two-dimensional laminar boundary layer 

on a flat plate under zero pressure gradient has been calculated on large com- 
puters by Kurtz (1961), Kaplan (1964), Osborne (1967), Wazzan et al. (1968) 
and Jordinson (1970, hereafter referred to as part 1). The results of these calcu- 
lations, obtained by slightly different methods, are sufficiently consistent to 
justify the view that the neutral-curve eigenvalues of the Orr-Sommerfeld 
equation for this flow are now well established. When these results are compared 
with the experimental observations of Schubauer & Skramstad (1947) and Ross 
et al. (1970) it is found that theory and experiment are in close agreement for 
boundary-layer Reynolds numbers of 1000 and over, but do not agree so well at  
lower Reynolds numbers. Possible reasons for a lack of agreement as the 
Reynolds number decreases may be suggested; on the one hand the experimental 
difficulties become greater and increasing experimental errors are unavoidable, 
and on the other hand in the theoretical analysis the ‘parallel mean flow ’ approxi- 
mation made in deriving the Orr-Sommerfeld equation tends to become less 
accurate. An estimate of the effect of the parallel flow assumption may be made 
by performing a numerical analysis of a modified form of the Orr-Sommerfeld 
equation in which the more important terms representing the growth of 
boundary-layer thickness are included. The present paper reports such a 
calculation. 

The modified equations 
In order to assess the relative magnitude of all the terms occurring in the com- 

plete equations, it  is convenient to begin with the Prandtl equations for steady 
two-dimensional flow in the zero-pressure-gradient boundary layer. Using U, as 
the free-stream velocity (in the x direction), U as the x component of steady 
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velocity in the boundary layer, W as the z component of steady velocity (normal 
to the plate), and P as the steady pressure, the relative magnitude of the Navier- 
Stokes terms may be found by substituting the non-dimensionalizing relations 

x = Lx’, u = U,Uf ,  

t = LUClt’, P = pU,2Pf, 

R, = LU0/v = xU,/V, 

z = LRlhz’ ,  W = U,R,& W ,  1 11) 

ap‘ 1 
the origin of x being taken at the leading edge of the plate. The equations then 
reduce to the Prandtl form 

-+-T=o,  -- 
azt - 0, 

au‘ a2uf 

auf awl 
ax! aZ 
, auf U---+W’-=-- 

axi azl a z t 2  * 

(2) 

All the Navier-Stokes terms which are retained are of fist order, and all omitted 
terms are of order R;l (or less) relative to the surviving terms in the equation 
concerned. This order of approximation is fully satisfactory since the experi- 
mental lower limit of Rz is about 40,000. 

Following the method of Jones & Watson (1961), the Prandtl equations are 
reduced to  the Blasius equation 

using the non-dimensional variable 7 = (U0/2vx)*z and the dimensional stream 
function Y? = (2U0 vx)*f(q). The numerical integration of (3) with appropriate 
boundary conditions leads to the following results for the displacement thickness 
of the boundary layer, S,, the boundary-layer Reynolds number, R, and other 
variables required here. 

f”(r)  +f(r)f”(rl) = 0, (3) 

S, = 2*xR;*lim [r -f(r)] = mxR;!z, 

R = U,SJV = T~R; ,  

where m = 1.7208, 
7-w 

U = U, f’(r) and lim f’(7) +- 1, 

W = (2RJ3 &[qf’(r) -f(r)] and lim W = W, --f +mR;*U,. 
?-+* 

7-+m 

When R, is reduced to 40,000, w, rises to 0.0043 U,. 
When a two-dimensional perturbation is superposed on the Blasius flow, the 

equations for the combined flow may be expressed using u and w for the x and 
z components of the perturbation velocity, and H and h for the vorticities in the 
mean flow and the perturbation, respectively. The equations governing the total 
flow are those for continuity and vorticity. Assuming that the perturbation 
velocities are sufficiently small to justify the neglect of the non-linear terms 
u(ah/&) and w(ah/az) and subtracting the mean flow terms, the linearized 
equations for the perturbation are obtained. 

au aw 
ax az 
-+- = 0, 

ah ah aH ah aH 
-+U-+U--+ W-+w- = vV2h. 
at ax ax az az 

(4) 



Boundary-layer growth and stability 815 

Equation (4) is satisfied by a, stream function +, and the periodic form 

$ = $(z)expi(ax-Pt) 

is adopted here, with /3 taken to be purely real, and a = a, + ia,. Substituting 
+ in (5) and using Dq5 for dq5/dz, we obtain the relation 

In order to reduce (6) to the Orr-Sommerfeld form, the assumption W = 0 is 
required, with the consequent relation aU/ax = 0, implying parallel mean flow 
in the boundary layer. If this assumption is not made, the relative magnitude of 
all the terms in (6) may be found by substituting (1) together with a = L-lR!a’ 
and ,8 = L-1RiUo/3‘ (the new relations being required to retain the main Orr- 
Sommerfeld terms). Equation (6) then becomes 

This shows that two terms in (6), WD(D2-a2)q5 and (a2U/ax8z)  Dq5, are of the 
same order as the viscous term on the right-hand side, and are the principal terms 
representing the growth of boundary-layer thickness. 

For numerical analysis, the resulting equation is made non-dimensional in the 
normal manner for the Orr-Sommerfeld equation, writing z = d1z‘, a = a‘/6,, 
/3 = Uo/3’/Sl, U = Uo U‘, W = Uo W and R = UoSl/v. The equation to be 
integrated is then 

(a’ u’ - B’) ( 0 ’ 2  - 01’2) +‘ - i W’D‘(0’2 - a’2) q5’ 

where the coefficient - a2U’/ax‘ az’ has been replaced by a2 W‘/azt2, using 
continuity equation. 

The boundary conditions on q5 (z)  

As in part 1, the boundary conditions express the requirement that 
perturbation velocities vanish at z = 0 and z = 00. At z = 0, $ = Dq5 = 0. 
large values of z, (8) takes the form: 

(a’-P’) ( D ’ 2 - a ‘ 2 ) ~ ’ - i ~ ~ D ’ ( D ’ 2 - ~ ( . ’ 2 ) ~ ’  = - ( i /R )  (D’2-a12)2q5‘, 

and the solution fitting the outer boundary conditions is 

#’ = A e-a’d + B e-@, 

(8) 

the 

the 
For 

where A and B are arbitrary constants, and p 2  -pRWL - y2 = 0, with 
y 2  = at2+iR(a’-P’). SinceRWL M 1.5 and Iy21 is of the order of 100, lpl M IyI 
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and le-pz'l < Ie-a'z'I for z' > 0. The required outer boundary condition may there- 
for be expressed in the form $' - e-a'z' for large z'. The presence of the W' term 
does not affect the form of the boundary conditions, and the calculations have 
been carried out on this assumption. 

The eigenvalue calculations 
The purpose of the analysis is to determine the eigenvalues a = a,+iai for 

given R and given real p. The mean flow coefficients should be known as accu- 
rately as possible, and direct integration of (3) is therefore desirable. The com- 
puter program written by Jordinson for part 1 of this paper was kindly made 
available for the present work, and was supplemented by a program for the 
calculation of the new terms in (8). The resulting program was designed to give 
results both with and without the new terms so that an accurate comparison 
could be made. 

The rational difference approximation, given by Osborne (1967) and employed 
by Jordinson, was used, yielding a heptadiagonal antisymmetric matrix of 
finite-difference coefficients. In  order to carry out the iteration for an eigenvalue, 
a good initial approximation was necessary; it was assumed that the same initial 
approximation would be satisfactory for the calculations with and without the 
additional terms. This assumption worked well and gave rise to no difficulties. 

In  Jordinson's work various step lengths, 12, were used, and he finally chose 
SO steps for the full range of the calculations, 0 < z/Sl < 6. In the present case, 
80,100 and 120 steps were used in preliminary runs, and it was found again that 
80 steps in the same range of z gave adequate accuracy. 

The results of the calculations 
The inclusion of the W terms produces a reduction in the values of a: which is 

almost independent of /3' and varies significantly with R. The reduction amounts 
to about 0.003 for R = 400, about 0.002 for R = 1000 and about 0.0007 for 
R = 2000. Prom the experimental point of view, interest is centred on the varia- 
tions of the wavelength, A, with R, for agiven frequency parameter, F = /?'/R, and 
a given value of U,. The wavelength is then proportional to the reciprocal of 
a, = a: R-l U, v-l, where U, v-l is constant. Table 1 shows some of the results 
grouped to show the variation of a, as a function of R when U, and P are constant. 

The inclusion of the W terms affects the values of a; in a more complicated 
manner. In  general, the values are reduced, and in the neighbourhood of branch I 
of the neutral stability curve (where a: first passes through zero) the reduction is 
roughly inversely proportional to R. At constant R the reduction in a; increases as 
/?'increases, and this continues for some distance a t  least into the second damping 
region, but in the first damping region as p' decreases below its branch I value, 
the reduction in a; falls to a minimum and rises again. Since a negative value of 
a; gives amplification, a reduction of a; represents increased amplification or 
decreased damping. The new neutral stability curve therefore lies outside the 
curve obtained by Jordinson, and the critical Reynolds number is lower than his, 
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P x  106 R 
40 500 

1000 
1500 
2000 

50 400 
800 

2000 

80 500 
1000 
1250 
1500 

100 400 
800 

1000 

p’ 
0.02 
0.04 
0.06 
0-08 

0.02 
0.04 
0.10 

0.04 
0.08 
0.10 
0.12 

0.04 
0.08 
0.10 

W terms 
included 

1.36 
1.32 
1.27 
1.26 

1.60 
1.61 
1.51 

2.46 
2.30 
2.29 
2.27 

3.00 
2-81 
2-79 

W terms 
excluded 

1-41 
1.32 
1.27 
1.26 

1-70 
1.63 
1.52 

2.51 
2.32 
2.30 
2.28 

3.08 
2-83 
2.80 

TBLE 1. Variation of a: R-1 with R at constant F. 
F = ,&/R = Pv/U& u:R-l= av/U, 
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FIG-E 1. The calculated neutral stability curve: E” x lo6 versus R, 
0, including the W terms; x , excluding the W terms. 

F L M  43 
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with a new value of just below 500. In  order to define the neutral curve near its 
turning point, the program was run at closely spaced values of p' with the 
following values of R: 490, 500, 505, 510, 515, 520 and 530. The resulting data 
are given in table 2 and figure 1. The maximum value of F now obtained is about 
260 x 

R 

500 
505 
510 
515 
520 
530 
570 
600 
675 
725 
800 

1000 
1250 
1500 
2000 

P x  106 
Branch I 
244 (-) 
229 (-) 
221 (-) 
213 (-) 
208 (230) 
198 (208) 
166 (170) 
147 (150) 
116 (117) 

84 (85) 
56 (56) 
38 (38) 
27 (27) 
17 (17) 

100 (101) 

F x 106 
Branch I1 

248 (-) 
257 (-) 
258 (-) 
259 (-) 
259 (231) 
256 (242) 
246 (238) 
235 (229) 
209 (206) 
194 (191) 
172 (170) 
130 (129) 
98 (98) 

52 (52) 
77 (76) 

TABLE 2. Points on the neutral stability curve calculated with W terms included; the 
numbers in brackets are calculated with equal accuracy with W terms excluded 
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